Query cuDF DataFrames ===================== Everything in BlazingSQL is processed as a ``cudf.DataFrame``, much like almost everything in the RAPIDS ecosystem. Therefore you can easily build a BlazingSQL table off of a cudf DataFrame, by only providing the table name and the DataFrame itself. .. code-block:: python import blazingsql import cudf bc = blazingsql.BlazingContext() table_gdf = cudf.read_csv('...file_path/table.csv') bc.create_table('table_name', table_gdf) Parameters ~~~~~~~~~~ * **table_name** - string. **Required.** Name of the table you are creating. * **cudf.DataFrame** - ``cudf.DataFrame``. **Required.** The DataFrame you wish to query. Query dask_cudf DataFrames ========================== When using a Dask client to make BlazingSQL work in a distributed context, you can also create a BlazingSQL table from a dask_cudf DataFrame. .. code-block:: python import blazingsql import dask_cudf from dask.distributed import Client from dask_cuda import LocalCUDACluster cluster = LocalCUDACluster() client = Client(cluster) bc = BlazingContext(dask_client=client, network_interface='lo') table_ddf = dask_cudf.read_parquet('...file_path/table.parquet') bc.create_table('table_name', table_ddf) Parameters ~~~~~~~~~~ * **table_name** - string. **Required.** Name of the table you are creating. * **dask_cudf.DataFrame** - ``dask_cudf.DataFrame``. **Required.** The DataFrame you wish to query.