.. _sql_dtypes: Data types ========== Blazing SQL engine supports most of the same data types that `RAPIDS cudf supports `_ supports. The table below shows all the data types supported with their mapping to cuDF. .. list-table:: Data types :widths: 15 25 25 25 25 :header-rows: 1 * - Data Kind - Scalar - cuDF Alias - BlazingSQL Support - SQL Equivalent * - Integer - np.int8_, np.int16_, np.int32_, np.int64_, np.uint8_, np.uint16_, np.uint32_, np.uint64_ - ``'int8'``, ``'int16'``, ``'int32'``, ``'int64'``, ``'uint8'``, ``'uint16'``, ``'uint32'``, ``'uint64'`` - ``'int8'``, ``'int16'``, ``'int32'``, ``'int64'``, ``'uint8'``, ``'uint16'``, ``'uint32'``, ``'uint64'`` - ``TINYINT``, ``SMALLINT``, ``INT``, ``BIGINT`` * - Float - np.float32_, np.float64_ - ``'float32'``, ``'float64'`` - ``'float32'``, ``'float64'`` - ``DECIMAL``, ``FLOAT``, ``DOUBLE`` * - Strings - str_ - ``'string'``, ``'object'`` - ``'string'``, ``'object'`` - ``VARCHAR`` * - Datetime - np.datetime64_ - ``'datetime64[s]'``, ``'datetime64[ms]'``, ``'datetime64[us]'``, ``'datetime64[ns]'`` - ``'datetime64[s]'``, ``'datetime64[ms]'``, ``'datetime64[us]'``, ``'datetime64[ns]'`` - ``TIMESTAMP`` * - Timedelta (duration type) - np.timedelta64_ - ``'timedelta64[s]'``, ``'timedelta64[ms]'``, ``'timedelta64[us]'``, ``'timedelta64[ns]'`` - Currently not supported - * - Categorical - - ``'category'`` - Convert to ``'string'`` before creating table - ``VARCHAR`` * - Boolean - np.bool_ - ``'bool'`` - ``'bool'`` - ``BOOLEAN`` **Note: All dtypes above are Nullable** .. _np.int8: .. _np.int16: .. _np.int32: .. _np.int64: .. _np.uint8: .. _np.uint16: .. _np.uint32: .. _np.uint64: .. _np.float32: .. _np.float64: .. _np.bool: https://numpy.org/doc/stable/user/basics.types.html .. _np.datetime64: https://numpy.org/doc/stable/reference/arrays.datetime.html#basic-datetimes .. _np.timedelta64: https://numpy.org/doc/stable/reference/arrays.datetime.html#datetime-and-timedelta-arithmetic .. _str: https://docs.python.org/3/library/stdtypes.html#str